An Advance Q Learning (AQL) Approach for Path Planning and Obstacle Avoidance of a Mobile Robot

نویسندگان

  • Arpita Chakraborty
  • Jyoti Sekhar Banerjee
چکیده

The goal of this paper is to improve the performance of the well known Q learning algorithm, the robust technique of Machine learning to facilitate path planning in an environment. Until this time the Q learning algorithms like Classical Q learning(CQL)algorithm and Improved Q learning (IQL) algorithm deal with an environment without obstacles, while in a real environment an agent has to face obstacles very frequently. Hence this paper considers an environment with number of obstacles and has coined a new parameter, called ‘immediate penalty’ due to collision with an obstacle. Further the proposed technique has replaced the scalar ‘immediate reward’ function by ‘effective immediate reward’ function which consists of two fuzzy parameters named as, ‘immediate reward’ and ‘immediate penalty’. The fuzzification of these two important parameters not only improves the learning technique, it also strikes a balance between exploration and exploitation, the most challenging problem of Reinforcement Learning. The proposed algorithm stores the Q value for the best possible action at a state; as well it saves significant path planning time by suggesting the best action to adopt at each state to move to the next state. Eventually, the agent becomes more intelligent as it can smartly plan a collision free path avoiding obstacles from distance. The validation of the algorithm is studied through computer simulation in a maze like environment and also on KheperaII platform in real time. An analysis reveals that the Q Table, obtained by the proposed Advanced Q learning (AQL) algorithm, when used for path-planning application of mobile robots outperforms the classical and improved Q-learning. An Advance Q Learning (AQL) Approach for Path Planning and Obstacle Avoidance of a Mobile Robot

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

Optimal Trajectory Planning of a Mobile Robot with Spatial Manipulator For Spatial Obstacle Avoidance

Mobile robots that consist of a mobile platform with one or many manipulators mounted on it are of great interest in a number of applications. Combination of platform and manipulator causes robot operates in extended work space. The analysis of these systems includes kinematics redundancy that makes more complicated problem. However, it gives more feasibility to robotic systems because of the e...

متن کامل

Direct Optimal Motion Planning for Omni-directional Mobile Robots under Limitation on Velocity and Acceleration

This paper describes a low computational direct approach for optimal motion planning and obstacle avoidance of Omni-directional mobile robots within velocity and acceleration constraints on the robot motion. The main purpose of this problem is the minimization of a quadratic cost function while limitation on velocity and acceleration of robot is considered and collision with any obstacle in the...

متن کامل

Formation Control and Path Planning of Two Robots for Tracking a Moving Target

This paper addresses the dynamic path planning for two mobile robots in unknownenvironment with obstacle avoidance and moving target tracking. These robots must form atriangle with moving target. The algorithm is composed of two parts. The first part of thealgorithm used for formation planning of the robots and a moving target. It generates thedesired position for the robots for the next step. ...

متن کامل

Obstacle Avoidance of mobile robot using PSO based Neuro Fuzzy Technique

Navigation and obstacle avoidance are very important issues for the successful use of an autonomous mobile robot. To allow the robot to move between its current and final configurations without any collision within the surrounding environment, motion planning needs much treatment. Thus to generate collision free path it should have proper motion planning as well as obstacle avoidance scheme. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJIMR

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013